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We consider single ring polymers which are confined on a plane but maintain a
fixed three-dimensional knotted topology. The equilibrium statistics of such
systems is studied on the basis of a model on square lattice in which the config-
urations are represented by N-step polygons with a number of self-intersections
restricted to the minimum compatible with the topology. This allows to define
the size, s, of the flat knots and to study their localization properties. Due to the
presence of both excluded volume and attractive interactions, the model
undergoes a theta transition. Accurate Monte Carlo results show that, while in
the high temperature swollen regime both prime and composite knot compo-
nents are localized (OsPN ’N t, with t=0), in the low temperature, compact
phase they are fully delocalized (t=1). Right at the theta transition weak
localization prevails (t=0.44±0.02). Part of the results can be interpreted by
taking into account a dominance of figure eight shapes for the coarse grained
knotted polymer configurations, and by applying the scaling theory of polymer
networks of fixed topology. In particular t=3/7 can be conjectured as an exact
exponent characterizing the weak knot localization at the theta point.
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1. INTRODUCTION

The importance of the presence of knots in long polymer chains can
perhaps be best illustrated by referring to the example of DNA. (1, 2) In the
last decades several experiments have shown the role played by topological
entanglement in biological processes involving this macromolecule. (3)

Naturally occurring knots in the closed double helix prevent its separation



into single strands in replication, and impede access to the full genetic code
during transcription. (4) Nature therefore introduced enzymes whose func-
tion is to systematically change the knot type of circular DNA. (5–7) At the
dynamical level, experiments also show that the mobility of circular DNA
under electrophoresis depends sensibly on the type of knot. (5, 8–11) These
experimental facts concerning DNA largely contributed to turn knotted
molecules from a chemical and physical curiosity into one of the hot topics
in current polymer conformational statistics and biologically inspired
physics. However, this is far from exhausting the motivations of interest for
topologically entangled polymers. It has been realized early, (12, 13) and
proved rigorously in specific models, (14, 15) that topological entanglement is
generated with probability one in the process of polymerization of suffi-
ciently long closed chains. (16) At the same time, many static and dynamic
properties of single polymers, or of assemblies of chains, like gels or
rubbers, are expected to depend crucially on the ubiquitous self- and
mutual topological entanglement at molecular level. (17) Direct probes of the
effects of topology are nowadays offered by single molecule manipulation
techniques. (18) So, one can anticipate much progress in this field in the near
future.
From a theoretical point of view, the statistical or dynamical descrip-

tion of a polymer subject to topological constraints poses challenging dif-
ficulties which were recognized since the pioneering works on the
subject. (14, 19–23) Topological constraints imply restrictions of the region of
configuration space accessible to the system. Being global in nature, these
constraints require a full control of the polymer conformation and, except
in rare simplified situations, (19) are impossible to implement analytically,
e.g. by including suitable terms in a Hamiltonian. In spite of these difficul-
ties, in recent years some progress has been made in understanding the
interplay between topology and the critical statistical fluctuations of long
polymers. (20, 24–27) Effects of polymer thickness have also been investiga-
ted. (28) A consistent part of the progress reported in the above references
was achieved through powerful numerical methods (see, in particular,
refs. 20, 24, and 25). An obvious question is whether the scaling laws valid
for a closed polymer without constraints, remain unaltered when only a
specific topology is allowed. This seems to be the case for the scaling law
relating the average radius of gyration to the total chain length. For poly-
mers in good solvent, the n exponent of this law does not appear to be
affected by the restriction to a fixed knot type. (30–32) This and other numer-
ical results indicate that knots are statistically rather tight and involve rel-
atively small fractions of the total chain length. This localization was first
conjectured by comparing the rate of growth with length of the number of
possible configurations of a knotted ring to that valid for an unknotted
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one. (33) The ratio of the growth rates is a power of the chain length which
can be simply interpreted in terms of the multiplicity of positions that a
tight knot can assume along the chain itself.
An important step towards a more precise quantification of what

‘‘tight’’ precisely means for knots, and in the description of how the narrow
localization combines with the global scale invariance, was made most
recently through the study of ‘‘flat knots.’’ These knots, which were intro-
duced in ref. 39, could in principle be concretely realized by adsorbing an
entangled ring polymer on an attractive planar surface, (34) or by confining
it between two close parallel walls. Macroscopic realizations of flat knotted
polymers were also considered in experiments on vibrated granular
necklaces. (35) These systems are definitely, though only slightly, out of
equilibrium, (36) unlike those considered in the present paper. Polymers with
flat knots are especially amenable to a topological study, because they
constitute a concrete realization of those projections onto a plane on which
knot theory bases the definition and evaluation of topological invariants. (37)

If the number of overlaps of the polymer on itself is restricted to the
minimum compatible with the topology, the study of flat knots enjoys
some drastic simplifications with respect to the harder problem of three-
dimensional knots. The overlaps of the chain can be interpreted as vertices
of a two-dimensional polymer network, for which a well developed theory
exists, especially in two dimensions. (40, 41) At the same time the results for
such flat knots should give qualitative indications about the properties of
real knots in three dimensions. By exploiting results of polymer network
theory in two dimensions and numerical simulations, Metzler et al. (39) were
able to show that prime flat knots in a self-avoiding chain are strongly
localized, in the sense that their average size, s, which can be unam-
biguously defined, does not grow as a positive power of the total chain
length. They could also show that the probability distribution function for
the knot sizes asymptotically is a power law consistent with this non-
diverging first moment. Interestingly enough, the scaling analysis of ref. 39
was inspired by a recent approach to DNA denaturation, which was also
based on polymer networks. (42)

The above results on the localization of regular and flat knots leave
open interesting, further issues. An obvious one is of course the possible
extension of the study to knots in three dimensions. (43, 44) In the present
paper we concentrate on a similarly ambitious problem. We want to
understand the effects of attractive interactions inducing polymer theta
collapse (45) on the localization of flat knots. There are several motivations
to be interested in such an issue. Besides the validity per se as a frontier
problem in lattice statistics, such a study at the moment seems to be the
only realistic way to get indications on the behavior of knotted polymers
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undergoing collapse in three dimensions. In spite of the central role played
by theta collapse in the conformational statistics of macromolecules, to our
knowledge, until now there are neither experimental nor theoretical results
available on the localization properties of knots in polymers undergoing
such transition. On the other hand, it has been pointed out recently that
several proteins in their native state can be considered as knotted, even if
they are open chains. (46, 47) This raises immediately interest in the possible
interplay between collapse and knot localization. Indeed, one of the
accepted scenarios for protein folding implies that the native state is
reached after the protein enters in a compact molten phase. (48) In the case
of a knotted protein, it then becomes crucial to have an idea of whether in
the molten phase the knot is localized or not. On the basis of this alterna-
tive, one can anticipate completely different features for the dynamical
process by which the protein can eventually reach its native conformation.
As we will show below, the condition of being compact for a polymer can
involve a novel behavior in relation to the localization of possible knots. In
contrast to the localization systematically encountered so far for polymers
in swollen regimes, (39) or under the effect of repulsive interactions, (49) a flat
knot in a collapsed polymer turns out to be delocalized. This means that
the flat knot statistically tends to occupy the whole chain, rather than a
small fraction of it, even if the chain becomes infinitely long.
As far as we can see, flat knots of polymers below the theta transition

constitute the first example of delocalized topological entanglement
reported so far. The present paper presents a numerical and theoretical
study which allows to show that the theta collapse of self-attracting flat
polymers marks a localization-delocalization transition for the knots. Our
approach is based heavily on numerical simulation. At the same time, we
are able to interpret some of our findings in the light of results of the
theory of polymer networks in two dimensions. (40) The connection we can
establish here with polymer networks shows analogies between our
problem and some features emerging in recent studies of the denaturation
transition of DNA. (42) Indeed, in that context the application of polymer
network pictures revealed also quite successfull and led, among other
things, to the conclusion that denaturation can be to a large extent under-
stood and represented in terms of a simplified structural motiv (a single
denaturated loop from which two long double stranded segments depart)
which somehow dominates the conformational statistics. (42, 50) A similar
dominance seems to occur for various flat knots in several conditions, the
motiv being in this case the two-loop, number eight conformation. In both
contexts the existence of a dominating conformational motiv is an impor-
tant aspect of the physics which considerably simplifies the interpretation
of some results.
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The present paper is organized as follows. In the second section we
present the lattice model that we used for our numerical work, introduce
the problem of flat knot localization and describe our Monte Carlo strat-
egy. In the third section we discuss a simple, prime flat knot (31) at differ-
ent temperatures, showing that it undergoes a localization-delocalization
transition at the theta point. The behavior at the theta point is further
analysed in Section 4, where we illustrate how a polymer network picture
can be used to interpret some of the observed scalings. In Section 5 we
analyse the behavior of more complex knots, including those that are
composite. The last section is devoted to conclusions.
A short report containing part of our results was published earlier. (51)

2. POLYMER RINGS WITH FLAT KNOTS

The model (38) we study is defined on the square lattice. A configura-
tion of a ring polymer in good solvent is represented by a self-avoiding
polygon (SAP), i.e., a closed lattice walk whose steps can visit each edge
and each vertex of the lattice at most once. In order to introduce the pos-
sibility of topological entanglement, we further allow the polygon bonds to
be on the diagonals of elementary lattice plaquettes. When such an option
is taken, both diagonals of the elementary square must be simultaneously
occupied by bonds and one needs to further specify which of the two bonds
lies over the other. In this way each one of these intersections assumes the
meaning of overlap of the polymer with itself and the model can describe
the topological entanglement appropriate for a three dimensional knotted
ring constrained to lie on a plane. Of course, even if this ring is unknotted,
there can still be self-intersections in its two dimensional conformations.
The difference between a knotted and an unknotted ring is reflected by the
fact that only for the latter, one can eliminate all the intersections by a set
of continuous deformations, such as the lattice implementations of the
Reidemeister moves introduced in ref. 38. If there is a knot in the ring, its
flat realization will always show at least a minimum number of intersec-
tions, which coincides with the crossing number as defined in knot
theory. (37) In Fig. 1 we show the configuration of a flat trefoil knot (31)
according to our model.
The excluded volume restrictions and crossing conditions specified

above are such to determine for this model a SAP scaling behavior if all
allowed configurations are weighted equally. Indeed, even if the number of
overlaps is completely unrestricted the canonically averaged square radius
of gyration, ORF 2gPN,

5 has been shown in ref. 38 to grow with the number of

5Here O .PN denotes a canonical average of polygons with N steps.
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Fig. 1. A ring polygon with the topology of the trefoil knot and with a minimal number of
self-intersections.

polygon edges, N, as ORF 2gPN ’N2n, where n is consistent with the value 3/4
appropriate to SAP in two dimensions.(52) For each configuration one
defines RF 2g=; i (RF i−RF cm)2/N, where RF i are the positions of the vertices of
the polygon, and RF cm is their center of mass. The model can be further spe-
cified by introducing an interaction controlling the number of intersections:
each crossing is assumed to involve an increase in energy E > 0, so that a
configuration with Nc crossings contributes a Boltzmann weight wNc=
exp(−ENc/T), where T is the absolute temperature. Thinking to an
adsorbed polymer, E can be interpreted as the opposite of an adsorption
energy to be payed in order to create a crossing. Low values of w will reduce
ONcPN, but never below its minimum. In fact our results below are obtained
for w very close to zero, so that Nc allmost always stays at its minimum. In
order to allow the possibility of theta collapse, we introduce in our model an
attractive interaction potential which lowers the total energy by e > 0 when-
ever two nearest neighbor lattice sites are visited by nonconsecutive vertices
of the polygon. As discussed below, this attractive interaction is sufficient to
induce a theta collapse at sufficiently low temperature T. The Hamiltonian
of a polygon configuration w with Nc(w) crossings and Ni(w) nearest
neighbor interactions is H(w)=ENc(w)− eNi(w). Below we will always
choose units such that e=1 and will omit to specify dependences on E/T.
Indeed, E/T is always kept very large and the corresponding small and rare
fluctuations of Nc above its minimum are only allowed in order to improve
the mobility of our Markov chain in configuration space.(38) 6

6 A rigorous proof of ergodicity does not exists for our algorithm. However, in ref. 38 argu-
ments in support of ergodicity were produced.
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While very intuitive, the concept of length of a knot in three dimen-
sions poses the problem of a meaningful operative definition. (43) This is not
the case for flat knots in our model, when they are observed in polymer
configurations with the minimum number of crossings. These configura-
tions in the case of a flat trefoil (31) for example are such that the whole
chain backbone is partitioned into six arcs, each of which is incident on
two of the three overlap points. We can denote the lengths of these six arcs
by l1, l2,..., l6, with the understanding that the numbering is in order of
increasing length, i.e., l1 [ l2 [ · · · [ l6. Clearly, if the total length of the
ring N grows to infinity, at least Ol6PN must grow like N, since
N=; i OliPN. The length of the knot, l, can then be assumed to be given
by s=N−l6 and the behavior of Ol5PN for large N can be used in order to
definine the degree of localization. For example, if OsPN ’ Ol5PN ’N t, with
0 [ t < 1 we talk about a localized knot. If OsPN ’ Ol5PN ’N the flat knot
is delocalized, since the entanglement extends on average to the whole ring.
We studied the model by a Monte Carlo approach which induces a

Markov process in the space of configurations w. The transitions between
different configurations are determined by combinations of local and non-
local moves which are such to leave the topology invariant, i.e., do not
modify the type of knot. These moves are described in ref. 38. The statisti-
cal ensembles considered are grand canonical with a fugacity K assigned to
each polygon step. At a given temperature T a multiple Markov chain
(MMC) approach is used in which configurations are exchanged among
ensembles at different step fugacities K. This is done in order to improve
the efficiency of the sampling especially at low T. (53, 54) Our multiple chains
combined up to 10 processes at different K’s.

3. NUMERICAL RESULTS FOR THE TREFOIL

We start by discussing the trefoil, the simplest example of a prime flat
knot. We first determined ORF 2gPN by selecting from a grand canononical
simulation those polygons w whose total number of steps falls into a
narrow window centered at a particular N value. In order to enrich the
sampling at large N the maximal fugacity in the set defining our MMC’s
had to be always chosen very close to the critical value Kc(T) above which
ONP=. in the grand-canonical ensemble. Log-log plots of ORF 2gPN in a
wide range of N showed that while at high temperature n ’ 3/4, as appro-
priate for a swollen ring, for low temperature n ’ 1/2, indicating that the
polygons become compact. A precise localization of the theta transition
was made by identifying TG with the T value for which our plots showed
the best agreement with the expected theta point exponent n=4/7. (55) In
this way we got TG=1.49±0.05 which is remarkably close to the value
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(1.4988± .0007) appropriate for rings without any self crossings. (56, 57) The
existence of a theta point, and the essential coincidence of TG with the theta
temperature of SAP’s could be expected especially in view of the fact that,
as discussed below, in the high T and theta regimes the flat knot appears to
be localized.
For large N, Ol5PN was found to have different behaviors above, at

and below TG (see Fig. 2). For T > TG this average was found to approach a
constant asymptotically, consistent with t=0. For T=TG, Ol5PN increases
as a power of N and we determined t=0.44±0.02. (51) So, at the theta point
the localization becomes weaker than at high T and is described by a t
exponent which we will try to interpret in the next section. MC runs at
T=1.2 < TG showed a remarkable and somehow unexpected behavior of
Ol5PN. While at relatively low N this quantity appeared to follow a power
law with t slightly larger than the theta point value, for 2000 MN M 3000 its
growth turned definitely linear in N. Thus, t=1 qualifies as the most
plausible asymptotic exponent. This conclusion is supported by the cir-
cumstance that the statistical error bars for Ol5PN do not exceed 12% in the
region lnN \ 6. To our knowledge, this last result (51) is the first example of
knot in a delocalized state met so far.

3 4 5 6 7 8

ln N

2
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5

ln
 <

 l5
 >

_N

Fig. 2. Log-log plot of Ol5PN as a function of N for a trefoil knotted polymer. From bottom
to top: T=., 2.0, 1.49, and 1.25. The slopes of the straight lines are: 0.44 (dot-dashed), 0.66
(dashed), and 1 (full).
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4. POLYMER NETWORKS AND THE DOMINANCE OF FIGURE EIGHT

CONFIGURATIONS

If one interprets the intersection points as 4-leg vertices and if all li’s
are ± 1, the configurations of the flat trefoil can be regarded as those of a
polymer network with six macroscopic segments in two dimensions. The
theory of such networks has been developed by Duplantier, (40) Schäfer
et al., (58) and Ohno and Binder. (41) In ref. 42 the results of such theory were
successfully applied in order to predict the scaling of the probability dis-
tribution function of denaturated loops of DNA at melting. Inspired by
these progresses, Metzler et al. (39) used similar arguments to discuss the
scaling of the length distribution of prime flat knots in good solvent condi-
tions. Along similar lines we apply here network theory in the case of
polymer networks with both excluded volume and attractive interactions,
as required by our model.
A polymer network of given topology G is specified by the number of

vertices of degree k, nk (k=1, 2, 3,...), and by the lengths, l1, l2, l3,..., lm, of
the m segments joining the vertices. Keeping the various li’s of the order of
N=; i li, the total network length, the partition function can be put in a
form (40, 58)

ZG(l1, l2,..., lm)=K
−N
c l

cG −1
m FG(l1/lm, l2/lm,..., lm−1/lm) (1)

where FG is a scaling function and

cG=1− n dL+C
k
nksk (2)

In the last equation d is the dimension of the embedding space (2 in
our case) and L is the number of independent loops in the network.
Figure 3 gives an example of network with m=7, n1=2, n4=n3=n5=1,
L=3. The exponent cG and the function FG convey the dependence on the
specific topology of the network. The exponent sk is an anomalous scaling
dimensions associated to each k-leg vertex and in some cases it can be cal-
culated by field theoretical renormalization group methods in E-expansion
for models describing the polymer in the continuum. (40) In two dimensions,
Coulomb gas techniques have allowed exact predictions of sk, for both
good solvent (T=.), (40) and theta conditions. (55) Since Eqs. (1) and (2)
assume the polymer segments to be macroscopic, application to the case of
the network corresponding to the flat trefoil knot requires that all six seg-
ments are much longer than a single lattice step. For configurations of the
knotted polymer in which some of the segments remain microscopic
(li ’ 1), Eqs. (1) and (2) are expected to hold for an effective, contracted
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Fig. 3. A polymer network with m=7, n1=2, n4=1, n3=1, n5=1, and L=3.

network with fewer segments and, possibly, fewer and modified vertices.
A careful statistical analysis of the configurations obtained in our runs for
the trefoil knot at both T > TG and T=TG show that indeed a contracted
network description applies to these cases. Consider for example the case
T=TG. The configurations sampled in our simulation show that while l5
fluctuates rather broadly, within a range growing with N, the same does
not apply to l4, which takes most often microscopic values (l4 ’ 1) and
fluctuates much less. It is then natural to assume that the dominant con-
figurations of the trefoil are represented by a contracted network, with only
two segments and a four-leg vertex: this is a figure eight. By applying
Eqs. (1) and (2) and by assuming consistently with the numerics that
l5 °N, one can then derive the behavior of p(l5) the probability distribu-
tion of the values taken by l5. Indeed, for a figure eight network with seg-
ments of length N−l5 and l5 the partition function should scale as

Z8(N−l5, l5) ’K
−N
c (N−l5)

c8 −1 F8 1
l5
N−l5
2 (3)

Here c8=1−2dn+s4, where n=4/7 at the theta point. (55) On the other
hand, the values of sk are exactly known for a network at the theta point.
Since the system is described by the critical low-T phase of the O(n=1)
n-component spin model, Coulomb gas methods allow to derive
sk=(2−k)(2k+1)/42. (55) This implies c8=−12/7. Now, for l5/NQ 0,
the partition function in Eq. (3) should reduce to that appropriate for a self-
avoiding ring of N steps at the theta point, which scales as

Zo(N) ’K
−N
c N

−dn, (4)

again according to Eq. (1). Since Eq. (3) must match Eq. (4) in the limit
l5/NQ 0, we conclude that the scaling function F8 for small x should scale
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as F8(x) ’ x−c, with c chosen in such a way that the l5 dependence in
Eq. (3) disappears. This implies c=1− c8+dn=11/7=1.57. Hence, for
l5/N° 1,

Z8(N−l5, l5) ’K
−N
c (N−l5)

−dn l−11/75 (5)

and this clearly also implies p(l5) ’ l
−c
5 =l

−11/7
5 . From the last equation we

get immediately that Ol5P ’N3/7. This result is consistent with the numeri-
cal estimate t=0.44±0.02 we made on the basis of our MC data. Such
consistency shows that at the theta point the configurations of the flat
trefoil are dominated by the figure eight motiv. A similar dominance of the
figure eight holds in fact also at T > TG. This was already argued in ref. 39
in the T=. case by studying the probability distribution p(l5) obtained
from MC simulations of an off-lattice model of a flat trefoil knotted chain.
This distribution was found consistent with the value of c that can be
deduced along the same lines as above but using as inputs the s4 and the n
appropriate to a polymer in good solvent. In this case n=3/4, (52) and
sk=(2−k)(9k+2)/64 follows again by Coulomb gas methods applied to
a critical O(n=0) model. (40) The value of c obtained in the T=. case is
43/16 > 2, consistent with the fact that the first moment of p(l5) does not
diverge for NQ., i.e., with t=0 (See also Fig. 2). Indeed, since the
natural cut-off for the power law behavior p(l5) ’ l

−c
5 is N, only for c [ 1

one expects a divergent first moment. We verified numerically, by simula-
tions at T=2.0 > TG that the behavior valid for p(l5) at T=. holds also
at finite temperature above the theta point. This confirms the expectation
that the whole region T > TG can be considered as a unique phase as far as
the localization regime of the knot is concerned.
An obvious question is now whether one could hope to get similar

insight into the delocalization we got at T < TG. In the argument presented
above for the theta point a crucial assumption is that one can consider
l5 °N. If this is not the case Eqs. (1) and (2) can not tell much about the
degree of localization. The fact that Ol5PN ’N for large N implies that
such assumption is not legitimate. So, the delocalization result, certainly
the most relevant described above, rests completely on numerical evidence
at the present stage. Network scaling theory can however help in a tenta-
tive interpretation of the rather extended preasymptotic regime revealed by
the plot in Fig. 2 . For an initial interval of about three decades the plot at
T < TG shows a slope ’ 0.66, which would be consistent with a weak
localization rather than with delocalization.
There are results for polymer network theory which could correspond

to the situation of a collapsed polymer below the theta point. One plausible
candidate to represent such a polymer is the so called dense polymer. (59)
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For such a system Eq. (1) would hold in a modified form including an
extra factor growing as an exponential of N1/2. This factor takes into
account entropy effects due to the presence of a sharp interface for the
dense polymer. Apart from this detail, the sk of dense polymers in d=2
are known on the basis of the connection with the low-T phase of the
O(n=0) model and one has sk=(4−k)2/32. (59) Under the assumption
that also in the preasymptotic low T regime the statistics is dominated by
figure 8 configurations, the arguments presented above for the T=TG case
can be repeated giving c=11/8 or t=5/8, nicely consistent with the effec-
tive exponent t=0.66±0.07 observed numerically.
This last argument, together with the other results of this section,

shows that the dominance of figure eight configurations is a rather general
feature in the conformational statistics of the flat trefoil knotted polymer.
At the theta point this dominance could well hold also in a strict asymp-
totic sense. On the other hand, below the theta transition it is certainly only
a transient effect, determined by the fact that the total length of the
polymer needs to exceed a certain threshold before delocalization fully
prevails. As discussed also below, such threshold effects seems to be rather
spread in the statistics of topologically entangled polymers. In principle one
can not totally exclude that even at T=TG the dominance of figure eight
configurations could amount to a preasymptotic effect. However, to answer
this doubt would require to go far beyond the limits of our present com-
putational power.

5. OTHER FLAT KNOTS AND COMPOSITE KNOTS

An obvious question raised by the results for rings with the 31 topol-
ogy is whether the whole scenario of the delocalization transition
generalizes to the case of more complex prime knots, or to knots resulting
from the composition of two or more prime elements.
Let us consider first more entangled prime flat knots. We studied in

particular polymers with a 51 or a 71 knot. (37, 38) The first issue is whether
these knots undergo a delocalization transition of the same type as 31. In
Fig. 4 we report log-log plots of the average of the second longest arc
length for ring polymers with flat knots of type 31, 51, and 71 at
T=1.2 < TG. It appears clear that, even if the preasymptotic regimes last
somewhat longer for the more complex knots, in all the three cases the
curves tend to the same slope ’ 1 for N sufficiently large. This means that
the delocalization takes place in all cases.
It is also interesting to verify whether the dominance of figure eight

configurations, which played such an important role for T \ TG in the 31
case, holds more generally. Figure 5 shows log-log plots of Ol5PN, Ol9PN,
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Fig. 4. Log-log plot of the average length of the second largest arc as a function of N for
rings with the topology of the 31, 51, and 71 knot (bottom to top). The dashed line has slope 1.
The results are for T=1.2 < TG.
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Fig. 5. Log-log plot of the average length of the second largest arc as a function of N for
rings with the topology of the 31, 51, and 71 knot (top to bottom). The results are for T=TG.
The dashed line has slope 0.44.
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and Ol13PN, for the knots 31, 51, and 71, respectively. The temperature is TG.
In the diagram the three curves are vertically translated in such a way to
obtain an overlap among their most asymptotic portions. The good overlap
indicates that at the theta point the second longest segment of all three
knotted rings grows with approximately the same power of N. In view of
the discussion of the previous section, this further suggests that also for 51
and 71 the dominant configurations can be assimilated to the figure eight.
The more complicated microscopic structures underlying the effective 4-leg
vertex of the figure eight for the 51 and 71 cases do not seem to require any
modification of the exponent s4 to be associated to it.
The behavior of composite knots (37) is also intriguing. We considered

the simplest case, 31#31 (# is the standard notation for the sum of knots).
The composite character of this knot raises immediately the question of
how each component influences the other. In addition, one would like to
check whether the figure eight configuration still plays a special role in this
case. In this respect we found particularly instructive the study at T=TG.
Our simulation results show that after an initial transient, the two longest
segments of the network corresponding to the 31#31 knot start both to
grow proportional to N. This can be interpreted by assuming that the two
knots are both localized at different, arbitrary positions along the ring. The

2 4 6 8
 ln N

2

3

4

ln
 <

l>
N

Fig. 6. Log-log plot of the average length of the third largest arc as a function of N for a
ring with the topology of the 31#31 (top). For comparison we show a similar plot for the
length of the second largest arc for the trefoil. The data are for T=TG. The dashed line has
slope 0.44.
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two largest segments with average length 3N are simply the complemen-
tary arcs into which the centers of the knots partition the whole ring. On
the other hand, the third longest segment appears to grow asymptotically
as a power of N which is very close to the one appropriate for Ol5PN in the
case of a single 31 knot. All this is well illustrated in Fig. 6 where the plot of
ln Ol10PN for the 31#31 knot is reported together with that of Ol5PN in the
31 case. The plots are suitably shifted in such a way to overlap their most
asymptotic portions. The drop observed for Ol10PN between lnN ’ 4 and
lnN ’ 6 is due to the fact that in this interval Ol11PN increases its growth
rate with N, reaching Ol11PN ’ Ol12PN ’N. This increase inhibits initially
the growth of Ol10PN and even reduces it. We also observed that, within the
explored range of N, Ol9PN for the composite knot does always grow very
weakly compared to Ol10PN. All these findings can be interpreted in terms
of the contracted network picture sketched in Fig. 7. There we have again a
figure eight in which the largest loop has total length N−l10, but is divided
into two arcs by the 4-leg vertex and by another 2-leg vertex which repre-
sents the most localized component of the knot. This last component will
be assumed to be pointlike compared to the other one, which in turn
develops the smaller loop of the figure eight network.
The partition function describing such a network has the form

ZC(N−l10, l10) ’ F
N−a

a
dx K−Nc (N10)

c8 −1 FC 1
x
N10
,
l10
N10
2 (6)

where we indicate by l10 the length of the smaller loop and N10=
N−x−l10. In Eq. (6) C stands for the network of Fig. 7, and a represents a
lower cut-off. Since s2=0 we have cC=c8. The two statistically longest
segments are those of length x and N−l10−x and the integration in x takes
into account the arbitraryness of the relative position of the two compo-
nents. Consider now the limit l10/NQ 0. It is clear that Eq. (6) in such

N – x – l
10

 l
10

x

Fig. 7. Polymer network representing the composite knot 31#31 at the theta-temperature.
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limit must reduce to the partition function of a ring with two 2-leg vertex
insertions (a network which we denote by C0), which is

ZC0 (N) ’ F
N−a

a
dx K−Nc (N−x)

−3/2 FC0 1
x
N−x
2 , (7)

where we took into account that cC0=1−dn=−1/2. Since this last parti-
tion must be simply ’NZo, with Zo given in Eq. (4), the scaling function
FC0 must reduce to a constant. This makes easy the matching of Eqs. (6)
and (7) in the limit. Indeed, this simply leads to

FG 1
x

N−x−l10
,

l10
N−x−l10
2 ’ 1 l10

N−x−l10
2−c, (8)

with c taking the same value as in the case of the prime 31 knot. So, the
third longest arc in the 31#31 knot has a length probability distribution
decaying with the same power as p(l5) for the 31 knot. This justifies the
coincidence of asymptotic slopes displayed in Fig. 6.
For the 31#31 knot we did also obtain evidence that delocalization

occurs at T < TG. Indeed, after a long transient, Ol10PN starts eventually to
grow more rapidly, in a way approximately compatible with a proportio-
nality to N.

6. CONCLUSIONS

Our results show that the flat knots of an interacting ring polymer in
two dimensions undergo a delocalization transition when the chain passes
from the high-T swollen regime to the low-T compact one. At T > TG both
prime and composite knots are strongly localized, with size distributions
having finite first moments as NQ. (t=0). (39, 51) On the other hand,
below the theta point the average sizes of the knots diverge proportional to
N. Right at T=TG, the knots are weakly localized, i.e., their average size
grows as N t with t=0.44±0.02.
Configurations that have the shape of a figure eight dominate the sta-

tistics at the theta point, as was already found to be the case for flat
knotted rings in a good solvent regime. (39, 51) This dominance allows to
exploit results of the theory of polymer networks of fixed topology in order
to conjecture t=3/7 as the exact exponent characterizing the weak
localization of flat knots at the theta point. Figure eight configurations are
relevant also for temperatures below TG, as demonstrated by our analysis of
the preasymptotic behavior of Ol5PN for the 31 knot.
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The scenario outlined above demonstrates a highly nontrivial interplay
between topology and attractive interactions in a polymer system. Beyond
the possible direct relevance of the model for applications, our results
naturally suggest that qualitatively similar delocalization phenomena could
be induced by the collapse transition also in the case of knotted polymers
in three dimensions. A fundamental problem in that case is that of giving a
meaningful definition of the size of a knot. In fact the present approach,
which considers flat knots with minimal number of crossings, profits of the
possibility of a simple and easily implementable definition of knot size. By
allowing unrestricted crossings (w=1), the problem of defining a flat knot
size would present essentially the same difficulties as in three dimensions.
However, some interesting proposals of such definition already exist. (43, 60)

In the light of such definitions, knots of ring polymers in the good solvent
regime are expected to be well localized. (33) This localization in good
solvent is suggested also by studies in which the size of the knot is
indirectly defined by making reference to the mechanical response of the
polymer to an applied force. (44) If collapse induced delocalization could be
demonstrated also for the three dimensional case, this phenomenon would
have much impact in several contexts, ranging from protein folding, to the
mechanical and dynamical properties of polymers.
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